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Increased sensitivity to climate change in disturbed
ecosystems
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Human domination of the biosphere includes changes to disturbance regimes, which

push many ecosystems towards early-successional states. Ecological theory predicts that

early-successional ecosystems are more sensitive to perturbations than mature systems, but

little evidence supports this relationship for the perturbation of climate change. Here we

show that vegetation (abundance, species richness and species composition) across seven

European shrublands is quite resistant to moderate experimental warming and drought,

and responsiveness is associated with the dynamic state of the ecosystem, with recently

disturbed sites responding to treatments. Furthermore, most of these responses are not

rapid (2–5 years) but emerge over a longer term (7–14 years). These results suggest that

successional state influences the sensitivity of ecosystems to climate change, and that

ecosystems recovering from disturbances may be sensitive to even modest climatic changes.

A research bias towards undisturbed ecosystems might thus lead to an underestimation of

the impacts of climate change.
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I
n climate change experiments, the vegetation at a study site is
typically viewed as a system that is stable or close to
equilibrium. A common objective is to assess whether a

climatic treatment can push the system away from this
hypothesized stable state. Most ecosystems, however, are not in
equilibrium. Rather, they change over time and are often
recovering from past disturbances1. This is particularly true
today, as increasing human domination of the biosphere2 pushes
many ecosystems towards a more dynamic, early-successional
state. Although Odum3 suggested in 1969 that early-successional
ecosystems are more sensitive to perturbation than late-
successional ones, this feature of ecosystems is rarely taken into
account in climate change research. Single-site climate change
experiments have reported that disturbed or recovering systems
were sensitive to climate manipulations4,5, but it remains unclear
whether an ecosystem’s dynamic state determines its sensitivity to
climatic changes. Grime et al.4 found that a stable, late-
successional grassland was more resistant to the same climatic
manipulations than a dynamic, early-successional grassland.
Several authors have suggested that successional state and
disturbance history could modulate responses to climatic
change6,7, but a lack of data has prevented direct investigations
of these relationships.

In addition to the experimental field manipulation of climatic
conditions, two other major field-based approaches can assess the
effects of climate change on ecosystems: long-term observa-
tions8,9 and multi-site and gradient studies across climatically
different regions10,11. Each approach has its own merits and
limitations7,12, but the combination of these approaches can be
particularly valuable. For example, contrasting results from
experiments conducted in different climatic regions may
highlight shifting sensitivities, such as a positive warming effect
on aboveground biomass in cold regions and negative effects in
water-limited regions13–15. Also, long-term experiments have
often detected an altered pattern of response over time, including
linear increases16, dampening17,18 and reversals19,20. Despite the
added value of combined approaches, long-term multi-site
experiments are rare.

Shrublands constitute an important component of global and
European terrestrial vegetation21,22, provide multiple ecosystem
services23 and are strongly affected by ongoing environmental
changes. The encroachment of shrubs has been observed in many
arid and semiarid regions of the world, mostly attributed to
changes in land use24. Expanding shrublands and other types of
woody vegetation have been estimated to be among the largest
carbon sinks in the United States25. As long-lived woody plants,
shrubs differ from herbaceous plants in their life history,
ecophysiology, biomass allocation and sensitivity to disturbance,
suggesting a potentially different sensitivity to changing climate.
A global meta-analysis found that shrubs respond to warming
more strongly than other woody and herbaceous plants13. All
these considerations suggest that shrubs and shrublands deserve
special attention in climate change impact research.

Here we investigated the responses of vegetation (abundance,
species richness and species composition) to experimental
warming and drought in a standardized field experiment across
seven shrubland sites in Europe over 7–14 years (Fig. 1; Table 1;
www.increase.ku.dk; UK: United Kingdom, NL: The Netherlands,
DK-M and DK-B: Denmark, HU: Hungary, SP: Spain, IT: Italy ).
Our results show that the studied shrublands are generally quite
resistant to long-term experimental warming and drought, with
no across-site responses and few responses within individual sites.
However, sites that respond to treatments are all recovering from
disturbance; vegetation does not respond to treatments in sites
that are in a steady state (as assessed by long-term trend in
vegetation abundance in the control plots at each site). This

suggests that sensitivity to climate change may be related to the
successional state of ecosystems, and that ecosystems recovering
from disturbances may be sensitive to even modest climatic
changes.

Results
Responses to warming and drought treatments. Neither
warming nor drought affected total vegetation abundance or
species richness across all sites averaged after 7–14 years of
experimental manipulation (long-term responses) (Figs 2 and 3).
We found that, across sites, the change in vegetation composition
was marginally affected by both warming (P¼ 0.061; Fig. 4a) and
drought (P¼ 0.072; Fig. 4b). Within the individual sites, warming
decreased species richness at SP but had no significant effect on
the other vegetation parameters at any of the sites (Figs 2a,3a and
4a). Drought decreased total cover at NL (P¼ 0.02; Fig. 2b) and
species richness at SP (P¼ 0.001; Fig. 3b). Drought also induced a
greater vegetation change at DK-M (P¼ 0.011) and SP
(P¼ 0.044) than in the respective control plots (Fig. 4b).

We found even fewer responses when we performed the same
set of analyses for years 2–5 after onset of the experimental
manipulation (short-term responses; Supplementary Figs 1–3).
Warming increased total vegetation abundance at the cross-site
level (P¼ 0.035; Supplementary Fig. 1), but this effect disap-
peared in the long term (Supplementary Fig. 4a). The only
individual-site level response to appear over the short term
occurred at SP, where drought reduced species richness
(P¼ 0.011). In the four additional site-level variables that
displayed long-term (but not short-term) responses, effect sizes
increased over time (Supplementary Fig. 4).

The effect of the dynamic state on vegetation sensitivity. To
quantify the dynamic state of the sites, we investigated the change
in vegetation abundance in the control plots during the
study period. Total vegetation abundance significantly increased
over time in the control plots at NL (6.3% per year; Po0.01), SP
(3.8% per year; Po0.01) and DK-M (2.7% per year; Po0.01),
but did not change significantly at the other four sites (Fig. 5).
The climatic manipulations thus led to significant responses only
at sites (NL, SP and DK-M) that showed significant successional
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Figure 1 | Location of the climatic manipulation experiments in Europe.

Arrows depict the broad-scale gradients in precipitation and temperature.

DK-B, Denmark at Brandbjerg; DK-M, Denmark at Mols; HU, Hungary;

IT, Italy; NL, Netherlands; SP, Spain; UK, United Kingdom.
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changes in the control plots. In addition, the dynamic state
of the sites (as assessed by the trend in vegetation abundance in
the control plots) was related to treatment responses of the
vegetation (effect sizes of the treatment effects on Bray–Curtis
dissimilarity) for both warming (P¼ 0.04) and, marginally,
drought (P¼ 0.07; Fig. 6). In contrast, these effect sizes of the
warming and drought treatments were not related to mean
annual temperature (MAT; P¼ 0.57 and 0.97, respectively) or
mean annual precipitation (MAP; P¼ 0.36 and 0.43, respectively)
at the sites.

Discussion
While the cross-site pattern of responses we found suggested an
important and rarely explored relationship between recovery
from disturbance and sensitivity to climate, we found that
vegetation in most sites was resistant to treatments, and site-
specific outcomes were consistent with results from other
ecosystems. The negative response of total vegetation abundance
to drought at NL is similar to findings in other studies4,26,
including a meta-analysis10. Note that vegetation abundance was
increasing at this site (Fig. 5); thus, the negative drought effect

Table 1 | Characteristics of the study sites.

Site code UK NL DK-B DK-M HU SP IT

Country United
Kingdom

The
Netherlands

Denmark Denmark Hungary Spain Italy

Site name Clocaenog Oldebroek Brandbjerg Mols Kiskunság Garraf Capo Caccia
Coordinates 53�030N

3�280W
52�240N
5�550E

55�530N
11�580E

56�230N
10�570E

46�530N
19�230E

41�180N
1�490E

40�360N
8�90E

Soil type
(FAO)

Peaty Podzol Haplic
Arenosol

Sandy Podzol Sandy Podzol Calcaric
Arenosol

Petrocalcic Calcixerepts Luvisol and Leptosol

MAT (�C) 7.4 8.9 9.4 8.7 10.5 15.2 16.1
MAP (mm) 1263 1005 757 669 558 559 544
Growing
season

April–
September

April–
October

April–
September

April–
September

April–
September

January–May, October–
December

January–May, October–
December

Dominant
species

Calluna
vulgaris

Calluna
vulgaris

Calluna vulgaris
Deschampsia
flexuosa

Calluna vulgaris
Deschampsia
flexuosa

Populus alba
Festuca
vaginata

Erica multiflora
Globularia alypum

Cistus monspeliensis
Helichrysum italicum
Dorycnium pentaphyllum

MAP, mean annual precipitation; MAT, mean annual temperature.
MATs and MAPs apply to the study period (see Table 2). Species with relative cover above 10% in the control plots during the study period are listed as dominant species.
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Figure 2 | Change in vegetation abundance in response to treatments. Total vegetation abundance at the seven sites 7–14 years after the start of the

experiments in the warming (a) and drought (b) treatments. * indicates a significant difference (Po0.05) between treated and control plots; linear mixed

model (mean±s.e., n¼ 3). DK-B, Denmark at Brandbjerg; DK-M, Denmark at Mols; HU, Hungary; IT, Italy; NL, Netherlands; SP, Spain; UK, United Kingdom.
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Figure 3 | Change in species richness in response to treatments. Species richness at six sites 7–14 years after the start of the experiments in the warming

(a) and drought (b) treatments. * (Po0.05) and ** (Po0.01) indicate significant differences between treated and control plots; linear mixed model

(mean±s.e., n¼ 3). NL was omitted from this analysis due to its single-species vegetation. DK-B, Denmark at Brandbjerg; DK-M, Denmark at Mols;

HU, Hungary; IT, Italy; SP, Spain; UK, United Kingdom.
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does not imply a decline but rather a reduced increase. The
negative effect of drought on species richness at SP agrees with
other studies in semiarid systems26, and is most likely related to
reduced colonization due to water stress. The fact that
compositional change was the parameter with most of the
significant responses (two sites) suggests that plant community
composition is among the most sensitive ecosystem properties to
climatic change, and can respond even when ecosystem
characteristics like total vegetation abundance are unaffected27.
This fits the pattern previously suggested in a hierarchical
response framework28.

Most responses detected in the long term (7–14 years) were not
present in the short term (2–5 years), and effect sizes increased
over time. Although an increasing effect size over time has been
found before16, another study17 lists examples of effects fading
within 10 years due to acclimation, species reordering or new
limiting factors. It has also been found that short-term changes in
community composition can be reversed within a few years due
to species interactions19,20. This volatility highlights the risk in
basing conclusions on short-term studies.

Although we found a few site-level responses, the overall
resistance of the studied shrublands to 7–14 years of experimental
warming and drought is noteworthy. Resistance to long-term
climatic manipulation has been reported for various ecosystems,
such as arctic tundra29, tall-grass steppe30, calcareous grassland31

and arid shrubland32, indicating a generally widespread
ecosystem resistance to climatic change.

The lack of responses to experimental climate change observed
in our shrubland ecosystems may be related to the relatively
moderate treatment regimes applied (an average 0.43 K increase
in temperature and 22% reduction in annual precipitation).
However, our treatments are in line with recently observed
decadal changes (0.13 K warming33) at a multi-decadal (50 years)
timescale and are similar to treatments in many other climate
change experiments6,13,19. Although the treatments are not that
strong, consistent moderate warming and drought for 8–14 years
may be an extreme situation, which is supported by the finding
that most responses emerged only in the long run. Experiments
that impose larger treatment magnitudes have a greater chance to
exceed thresholds and thus may provide important insights into
ecosystem sensitivity, but are also more likely to have artefacts.
For example, both modelling34 and experimental studies35 show
that an unrealistic abrupt change in CO2 concentration
overestimates ecosystem sensitivity compared with a gradual
change to the same level. Mild treatments, on the other hand, may
not immediately push the environment beyond observed levels of
interannual variation, but may allow the detection of effects that
accumulate slowly or result from interacting factors. In our case,
the relatively mild treatments allowed us to detect differences in
sensitivity that seem to be related to successional states and
disturbance events.

All sites that responded to the treatments had vegetation that
was increasing in abundance following a disturbance. NL was
recovering from a previous cutting-management intervention, SP
was recovering from a fire before the start of the experiment and
DK-M was affected by a severe outbreak of heather beetles (and
consequent mowing) during the first study year (1999). The
observed treatment effects at these sites suggest an altered
recovery in the drought plots compared with the control plots. In
contrast, at the four sites that did not respond to treatments,
vegetation abundance did not change over time, suggesting that
the vegetation was in a relatively steady state. These results
indicate that the dynamic state of ecosystems may be an
important predictor of sensitivity to climate change.

Disturbances are likely to modulate ecosystem responses to
climatic change because different life stages of individual plants
and successional stages of plant communities differ in their
sensitivity to environmental conditions (for example, drought
stress). Regeneration of the previously dominant vegetation after
a disturbance can be affected by a climatic change that would
hardly affect established mature vegetation because early life
stages of plants are often more sensitive to environmental changes
than mature plants36–38. Changing environmental conditions
may not directly lead to an ecosystem state shift, but may just
reduce the resilience of an ecosystem (ability to recover from a
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Figure 5 | Change in total cover in the control plots over the

experimental period. Average annual change in total cover (TC) in the

control plots during the study period, estimated by linear regression of TC
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perturbation), thus making it more prone to state shift, but only
when disturbed39,40. This implies that the resistance of some
ecosystems to long-term and severe manipulations of climatic
factors, such as a 3 K increase in temperature31 or a 30% decrease/
increase in precipitation32, does not necessarily hold after the
occurrence of a major natural or anthropogenic disturbance.
The results of our study hint that climatic change reduces the
resilience of the studied shrubland ecosystems, even though
the imposed treatments had few effects in the absence of
disturbances.

The results of this study highlight the potential importance of
successional state, which has mostly been overlooked in climate
change studies. There are several important implications for the
planning and interpretation of climate change impact research.
The sensitivity of an ecosystem to climatic change is likely to be
critically determined by its ability to recover after a disturbance.
This implies that new experiments should account for site history
and quantify successional state or should ideally deliberately
include disturbances in the experimental set-up. In addition,
meta-analyses should include the dynamic state of study systems.
Finally, researchers should recognize that many results from
climate change experiments to date come from relatively stable
near-natural ecosystems6,7,13; disturbed, early-successional
systems are often avoided. This bias towards relatively stable
ecosystems, coupled with the short time frame covered by most
studies may lead to a broad underestimation of ecosystem
sensitivity to climate change.

Methods
Study sites. We studied seven sites (Fig. 1) that spanned different climatic regions
within Europe (Table 1). MAT at the sites ranged from 7.4 to 16.1 �C, and MAP
ranged from 544 to 1,263 mm (Table 1). The sites contained the major types of
shrubland that occur in temperate Europe: Atlantic heathland (UK, United
Kingdom; NL, The Netherlands, DK-M and DK-B, Denmark), continental forest
steppe (HU, Hungary), and Mediterranean machia/garrigue (SP, Spain and IT,
Italy). The sites were established in 1998 (UK, NL, DK-M and SP), 2001 (HU and
IT) or 2004 (DK-B). We used climatic data recorded in the control plots of each
experimental site to obtain the climate characteristics of each site. The treatment
effect at each site was calculated as the average difference in measured temperature,
precipitation and soil moisture between control and treatment plots.

Experimental manipulations. We used the same experimental technology for the
three treatments (warming, drought and control) at each study site. The warming
plots received passive warming at night; the plots were automatically covered with
curtains that reflected outgoing radiation after sunset41. The warming curtains
were automatically withdrawn during rain events. The night-time warming
approach is in accordance with reports that in the ongoing global warming there is
a higher rate of warming during the night than during the day42. A study
comparing different methods concluded that the passive night-time warming

approach is one of the most realistic and applicable43. Although the warming effect
obtained with this technique is greatest during the night, there is also some carry-
over effect into the day44. The warming treatment was applied year-round and
resulted in an average temperature increase of 0.43 K (range: 0.2–0.9 K, Table 2).
This is relatively modest but is in line with observed past changes33 at a multi-
decadal (50 years) timescale.

During rain events, transparent waterproof sheets automatically covered the
drought plots, excluding the rain. Note that these sheets covered the drought plots
only for the duration of the rain events, thus avoiding warming effects41. The
timing and duration of the experimental drought differed among the sites,
dependent on seasonality and regional climatic predictions (Table 2). We excluded
an average of 22% of precipitation (range: 8–49%, Table 2), and rain exclusion
resulted in an average soil moisture decline of 36% (range 23–47%, Table 2) by the
end of the drought periods. Control plots had the same metallic scaffolding as the
treated plots, but without curtains and sheets. Each treatment had three replicate
20 m2 plots except at DK-B, which had six replicates and a plot size of 9.1 m2.
Replicate numbers were limited by logistical and financial constraints associated
with such complex field experiments. Replicates were grouped in blocks consisting
of a control, a warming and a drought plot. There was no blocking of control and
warming plots at the NL site.

Sampling of vegetation. We used the point-intercept method to measure plant
cover and composition. At each site, 300 permanent positions were sampled per
plot per sampling year, except for DK-M (200 positions) and DK-B (50 positions
per plot in six replicate plots). The points were arranged either along lines (HU, SP,
IT and NL) or in grids per experimental plot (DK-M, DK-B and UK). Vegetation
sampling was conducted at least 50 cm from the plot edge to avoid edge effects. Pin
hits for all vascular plant species were recorded. Only the first hit was recorded at
IT where the vegetation was open. The vegetation was sampled annually following
the start of the experiments, but the sampling years varied subsequently: UK: 1998–
2000, 2002–2003 and 2007–2012; NL: 1998–2003, 2005, 2008, 2009 and 2012; DK-
M:1998–2001, 2003, 2006,and 2009–2012; DK-B: 2004 and 2006–2012; HU: 2001–
2012; SP: 1999–2012; and IT: 2001–2004 and 2010–2012.

We used the number of hits per 100 pins as a proxy for plant or vegetation
abundance, as typical in multi-year climate change experiments26 where the
experimental plots are too small for the regular harvesting of biomass.

Data analysis. The cover of vascular plants for years 7–14 was used to assess the
mid- to long-term responses of shrubland plant communities to experimental
manipulations. We used linear mixed models from the lme4 package45 in R46 to
identify treatment effects on total cover, species richness and compositional
change. Compositional change was assessed with the Bray–Curtis dissimilarity47 of
the plant community in a specific year compared with the plant community at the
beginning of the experiment at the same plot (pretreatment year or first year at SP).
The Bray–Curtis dissimilarity was calculated for each plot in all sampling years
with the vegdist function in the vegan package48 in R. Values of total cover, species
richness and compositional change were averaged across available years (7–14 for
long-term responses and 2–5 years for short-term responses) for each plot to avoid
temporal pseudoreplication. We calculated P values for fixed-effect parameters
with an analysis of variance using the Satterthwaite estimation of the degrees of
freedom with the lmerTest package49. We applied separate models to analyse the
effects of the warming and drought treatments and used site and site:block as
random factors for the cross-site tests; block was a random factor in the site-
specific analyses (the warming effect in NL was analysed with a linear model, since
warming and control plots were not blocked).
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Data were log-transformed (ln) to obtain normality and homoscedasticity in the
cross-site analyses. NL was excluded from all tests related to species richness and
the Bray–Curtis dissimilarity because it only had one vascular plant species.

We calculated the effect sizes of the treatments as Hedges’s g50:

g ¼ J
mtreatment � mcontrol

s�
ð1Þ

Where mtreatment and mcontrol are the average values in treatment and control plots. s*

is the pooled s.d. of both control and treatment plots, calculated as follows:

s� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncontrol � 1ð Þs2

control þ ntreatment � 1ð Þs2
treatment

ncontrol þ ntreatment � 2

s
ð2Þ

Where ncontrol and ntreatment are the number of replicates and s2
control and

s2
treatment are the variances of control and treatment plots. Finally, J is a factor to

correct for bias (related to small sample size) in the estimated effect size:

J � 1� 3
4 ncontrol þ ntreatmentð Þ� 9

ð3Þ

For variables with a significant treatment response in either the short or the long
term, we calculated the effect size over time. The successional status of the various
sites was determined by linear regression of vegetation abundance (relative to the
vegetation abundance at the start of the experiment) in the control plots over time.
The slope estimates from these linear regressions (average annual change) were
used as a measure of the dynamic status or successional trend for each site, with
higher values indicating more dynamic vegetation. We investigated whether the
effect size of the variable related to plant community composition (Bray–Curtis
dissimilarity) was related to MAT or MAP or the dynamic status of the sites with
linear regression.

All analyses where done in R46.
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